

# Promoting conservation agriculture in Central Asia and the Caucasus

Nurbekov Aziz, ICARDA-CAC



### The regional challenges

- Rapid growth of population followed by increasing demand for food and feed
- Area under irrigation has been increasing, but no more possible
- Arable land per capita is declining and competition for land and water is increasing
- Rising prices of inputs (fuel, fertilizer, seed, pesticides, etc.)
- Land degradation (salinization, soil erosion, waterlogging, overstocking and soil fertility decrease)



# Conservation agriculture can address these challenges

#### What is Conservation agriculture?

#### Empirical and scientific evidence internationally shows ....

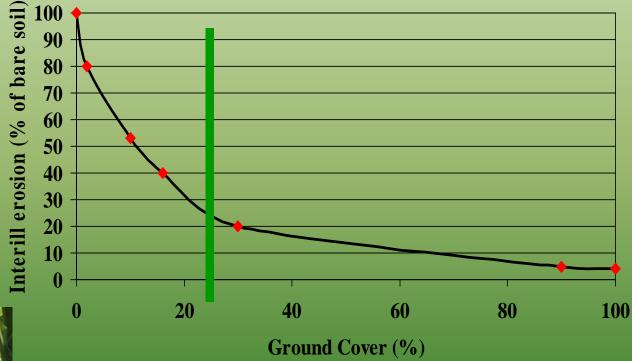
- No or minimum mechanical soil disturbance by – seeding or planting directly into untilled soil
- Enhance and maintain organic matter cover on the soil surface – using crop residues and cover crops to protect & feed soil life
- **Diversification of species** -- both annuals and perennials in associations, sequences and rotations

Source: Amir Kassam 2013





#### CA impact on soil fertility and environment


| ICARDA                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|---------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Type of degr                                | radation | Conservation Agriculture impact                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Soil salinity                               |          | □ Reduced soil salinity was reported by Devkota (2011b) □ The differences in soil salinity at the end between conventional practices (0.52%) and NT (0.39%) were significant. After 4 years, NT system had the lowest soil salinity level (Nurbekov 2008 and Pulatov et al., 2012).                                                                                                                                                                                    |  |  |  |
| Soil organi<br>matter                       |          | Numerous results from the irrigated areas showed that crop residue retention improves 50 and soil N content (e.g. Egamberdiev, 2007; Nurbekov et al., 2012; Pulatov et al., 2012) In comparison, a wealth of information on CA practices worldwide shows a increase in SOM (e.g. West and Post, 2002; Sanchez et al., 2004; Govaert et al., 2006; Corsi et al., 2012) and these results were also confirmed be selected studies in the irrigated areas in Central Asia |  |  |  |
| Soil Biodiver:<br>& Biologica<br>activities | al       | I CA positive effect on earthworm populations, with earthworm biomasses u<br>to 80% higher                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Soil Physical chemical properties           |          | CA positive effect on soil aggregation + 60% (F. Tivet, Laos 2008)  Under CA total exchange capacity + 50% (P. Lienhard, Laos 2013)                                                                                                                                                                                                                                                                                                                                    |  |  |  |



#### Soil Cover and Erosion









From Brady and Weil, 2002

#### Conventional agriculture















### Conservation agriculture







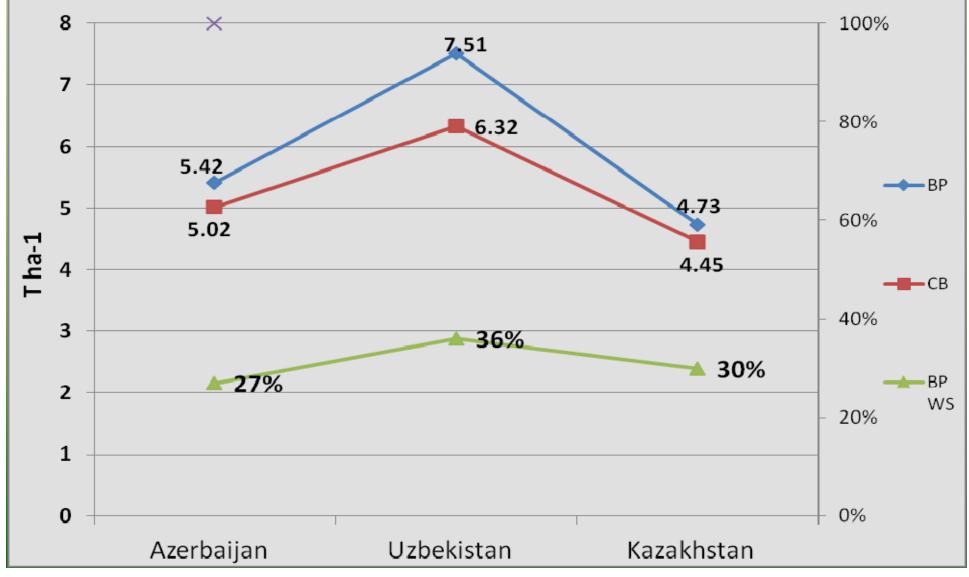


Farm power and energy for field production can be reduced by up to 60% compared to conventional farming due to elimination of most power intensive operations, such as tillage, harrowing, chiseling and packing

Additional equipment investment, particularly the number and size of tractors; and labour use is reduced








### **Project Results**



## Wheat Yield Response to planting method (2011-2013)







# Economics of planting methods on winte wheat productivity in Azerbaijan (2012-2013)

| Planting methods and          | Grain            | Production                | Production       | Net          | <b>Profitabilit</b> |
|-------------------------------|------------------|---------------------------|------------------|--------------|---------------------|
| seeding rates                 | yield, Mg        | cost 1\$ ha <sup>-1</sup> | value 1\$        | benefits, \$ | y rate ,%           |
|                               | ha <sup>-1</sup> |                           | ha <sup>-1</sup> |              |                     |
| Conventional – 220 kg         | 3.02             | 465                       | 960              | 495          | 106                 |
| ha <sup>-1</sup>              |                  |                           |                  |              |                     |
| Bed – 130 kg ha <sup>-1</sup> | 4.29             | 535                       | 1280             | 745          | 139                 |
|                               |                  |                           |                  |              |                     |







# Comparison wheat and fuel prices in Kazakhstan (1982-2012)



| Years | Wheat grain,<br>usd/kg | Fuel usd/kg | Difference |
|-------|------------------------|-------------|------------|
| 1982  | 0.29                   | 0.03        | 10:1       |
| 1997  | 0.06                   | 0.06        | 1:1        |
| 2012  | 0.29                   | 0.70        | 1:2.5      |

**Source: Medeubaev 2013** 

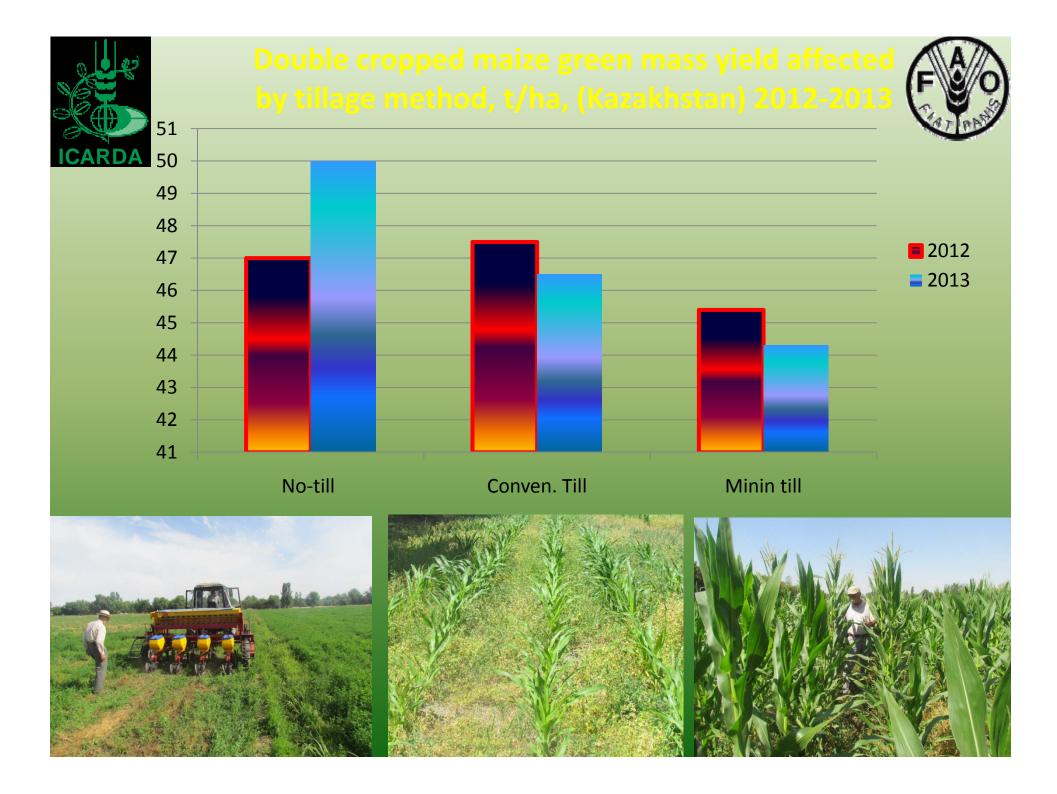




# Double crops will be essential to improve sustainability of farming and land use efficiency



# Effect of no till succeeding maize in Azerbaijan (2011-2012)




|                       | Cr              | <b>+</b> - † |                       |                |
|-----------------------|-----------------|--------------|-----------------------|----------------|
| Crops                 | Winter<br>wheat | Maize        | Winter<br>wheat+maize | +-, t<br>ha -1 |
| Winter wheat, control | 5.17            | -            | 5.17                  | -              |
| Winter wheat + maize  | 5.17            | 5.21         | 10.38                 | 5.21           |











## Mungbean grown as a catch crop with retention of surface residues in Karshi (2011-2013)



| Planting method            | Spent fuel for | Root       | Plant      | Yield, t/ha |
|----------------------------|----------------|------------|------------|-------------|
|                            | planting, l/ha | length, cm | height, cm |             |
| Conventional               | 53.6           | 25.4       | 67.17      | 1.61        |
| No-till with 1 cultivation | 13.6           | 23.5       | 68.83      | 1.77        |
| No-till                    | 5.9            | 23.8       | 65.35      | 1.94        |













# If CA is so good, why is it not spreading?



### Adoption — Regionally

- Kazakhstan 1.7 million ha
- Uzbekistan 0.6 million ha minimum till wheat (only one year), including 1500 ha in rainfed area
- Tajikistan 25,000-50,000 ha minimum till wheat
- Azerbaijan 1246 ha on irrigated land
- Kyrgyzstan 700 ha
- Armenia no data
- Georgia no data
- Turkmenistan no data



# Why has there been so little adoption of Conservation Agriculture outside the Kazakhstan?



## Constraints - adoption of conservation agriculture

- Mind set overcoming the culture of the plough.
- Lack of extension services throughout the region and lack of farmer expertise.
- Training needs larger than perceived
- Incentives in projects
- Lack of local manufacturers
- Limited number of publications CA
- Little or no mainstreaming of CA in National Programs
- Policy makers unaware of CA



#### Recommendations

•It will be helpful if the Governments would encourage the CA practices to enhance agricultural production and local production of CA equipment.

•Make a Special State decree on "Support the development of the zero till and direct planting practices" for wider adoption and increased effectiveness of CA.



#### Conclusions

#### CA -

- is responding to regional challenges.
- is known in parts of the region
- is growing (Northern Kazakhstan)
- is productive and sustainable (win-win)
- is reserves soil degradation
- is saving resources including fuel, seeds and labour
- is suitable for local conditions and can provide similar or higher crop yields
- is requires supportive policies for accelerated adoption

